Спектрофотометр для анализов крови

Спектрофотометр для анализов крови

Колориметрический анализ

Колориметрический анализ – визуальный метод фотометрического анализа, основанный на переводе определяемого компонента в окрашенное соединение и установлении концентрации окрашенного соединения по интенсивности или оттенку окраски.

Используют различные окрашенные соединения:

1) Окрашенные галогенидные и роданидные комплексы – для определения

Fe; Co; Mо; W; Bi и др.

2) Комплексы металлов с перекисью водорода – для определения Ti; V и др.

3) Аммиачные комплексы – для определения Сu и Ni.

4) Гетерополикислоты – для определения P; Si; As; W; Ti; Nb и др.

5) Комплексы основных красителей с галогеноксидами металлов – для определения Sb; Ta; Tl; Jn; Ga и т. д.

6) Комплексы металлов с органическими реагентами (дитизон и др.).

7) Окислительно-восстановительные реакции и др.

Наиболее часто применяют следующие приёмы сравнения окраски.

1. Стандартная – готовят серию растворов с различным содержанием определяемого компонента.

2. Разбавление – раствор, окрашенный более сильно, постепенно разбавляют до тех пор, пока окраски не станут одинаковыми с окраской пробирки со стандартным раствором.

3. Колориметрическое титрование – разбавляют испытуемый раствор внесением из бюретки неокрашенного стандартного раствора до окраски стандартного раствора.

 

Метод УФ-спектрофотометрии основан на определении веществ по собственному поглощению света. Многие органические соединения, растворённые в том или ином растворителе, характеризуются способностью поглощать УФ-лучи.

Анализ проводят без предварительной обработки исследуемого раствора, он основан только на собственном поглощении определяемых веществ. При таких определениях достигается довольно высокая чувствительность (0,2.0,5 мкг/см3).

В качестве растворителей используют воду, этилен, гексан, гептан, изооктан и др. Очень важно, чтобы растворитель не содержал примесей, поглощающих в той же области, что и исследуемые вещества. Измерения светопоглощения проводят главным образом в диапазоне 220-370 нм. При более низких значениях длин волн сильнее сказывается влияние посторонних веществ.

Метод УФ-спектрофотометрии применяют при анализе пестицидов и при контроле вредных веществ (антибиотиков) на предприятиях фармацевтической промышленности на участках сушки и фасовки препаратов, где сопутствующие примеси практически отсутствуют.

2.2.3 Инфракрасная спектрометрия

Инфракрасная спектрометрия. Спектры поглощения в инфракрасной области связаны с изменением колебательного и вращательного энергетического состояния молекул и содержат чрезвычайно специфичную информацию о строении химических соединений и наличии в их молекулах различных функциональных групп. Вследствие этого ИК-спектрометрия стала высокоэффективным методом идентификации органических веществ и расшифровки их структуры.


ИК-область спектра — 0,8- 200 мкм.

С целью снижения влияния содержащихся в атмосферном воздухе СО2 и паров воды (интенсивно поглощающих излучение в фундаментальной области спектра 2,5.50 мкм) в ИК-спектрометрах используют двухлучевые оптические системы.

В качестве источника излучения применяют глобар и штифт Нернста.

· Глобар представляет собой стержень из карбида кремния, нагреваемый электрическим током до 1300 — 1700 °С, а

· штифт Нернста в виде полого стержня длиной 3 см изготовляют из оксидов циркония и иттрия.

Ввиду того, что стекло плохо пропускает ИК-лучи, в ИК-спектрометрах используют отражающую, а не пропускающую оптику и применяют монохроматоры с дифракционной решёткой.

Многие типы фотоэлементов нечувствительны к электромагнитному излучению с длиной волны более 1 мкм, поэтому ИК-излучение обнаруживают и измеряют по вызываемому им тепловому эффекту с помощью чувствительной термопары, термометра сопротивления или полупроводниковых и пневматических детекторов.

Пробы, исследуемые методом ИК-спектрометрии, могут быть твёрдыми, жидкими и газообразными. Чаще всего имеют дело с жидкими пробами, кюветы для которых представляют собой две пластины из прозрачного для ИК-излучения материала с очень незначительным зазором между ними.

Жидкие пробы вводят в кюветы с помощью шприца, а при использовании разборных кювет пробу наносят на одну из пластин, к которой затем прижимают другую и закрепляют в специальном держателе.

Кюветы для газообразных проб аналогичны жидкостным, но имеют большие размеры поглощающего слоя (5…10 см). При определении в газе микропримесей торцы стен кюветы заменяют полированными зеркальными поверхностями, многократно отражающими ИК-излучение и тем самым существенно увеличивающими эффективную толщину поглощающего слоя (1.100 м).

Исследование твёрдых образцов может быть осуществлено наиболее просто путём растворения их в соответствующей жидкости. Для растворения твёрдых органических веществ в практике ИК-спектрометрии применяют тетрахлорметан, хлороформ и сероуглерод.

Твёрдые пробы, нерастворимые в обычных жидких средах, готовят к анализу путём тщательного измельчения с таким расчётом, чтобы размеры частиц не превышали длину волн используемой области ИК-спектра (2.. .3 мкм).

 

2.2.4. Нефелометрический и турбидиметрический анализ.

В нефелометрическом и турбидиметрическом анализе используется явление рассеяния света твердыми частицами, находящимися в растворе во взвешенном состоянии.

Пробу освещают потоком света с интенсивностью I0, а затем, так же как в молекулярной спектроскопии, измеряют интенсивность прошедшего излучения It или определяют интенсивность излучения, рассеянного под определенным углом (например, I90 при 90о).

С ростом числа частиц суспензии отношение It/I0 уменьшается, а отношения вида I90/I0 увеличиваются, во всяком случае, до умеренных концентраций.

 

 

Метод, в котором используют интенсивность прошедшего света It, называют турбидиметрией,а метод с измерением под углом 90о (или каким-либо другим) – нефелометрией.

При турбидиметрических измерениях величина, называемая мутностью, соответствует оптической плотности и может быть определена из соотношения, аналогичного основному закону светопоглошения:

S = lg (I0/I) = k b N,

где S – мутность; k – коэффициент пропорциональности, называемый коэффициентом мутности; b – длина пути; N – число рассеивающих частиц в единице объема.

Различают несколько вариантов нефелометрии и турбодиметрии.

· В одном из них, измеряют непосредственно мутность объекта исследования, без проведения химических реакций.

Так измеряют мутность растворов, прозрачность воды, нефтяных фракций, наличие пыли в газах и т. п.

· Вторая, более распространенная группа методов основана на получении взвеси с помощью химических реакций и измерении интенсивности рассеянного света.

Например, для определения сульфатов в воде получают при помощи BaCl2 суспензию BaSO4, интенсивность светорассеяния которой измеряют в нефелометре, а затем по калибровочному графику находят концентрацию ионов SO2-4.Пользуясь калибровочными графиками, рассчитывают содержание определяемого вещества.

Еще одно направление практического использования таких методов – это применение лазеров для дистанционного определения частиц, содержащихся в воздушном пространстве.

 



Источник: studopedia.su


Добавить комментарий